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Abstract

We consider the unique Hermitian connection with totally skew-symmetric torsion on a Hermitian manifold. We prove that if
the torsion is parallel and the holonomy is Sp(n)U (1) ⊂ U (2n) × U (1), then the manifold is locally isomorphic to the twistor
space of a quaternionic Kähler manifold with positive scalar curvature. If the manifold is complete, then it is globally isomorphic
to such a twistor space.
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1. Introduction

Let (Mn, g) be an oriented Riemannian manifold. Let G be a subgroup of SO(n) and PG be a G-structure on M ,
i.e., PG is a principal G-bundle which is subbundle of the bundle of oriented orthonormal frames PSO(n). Suppose
that the Levi-Civita connection ∇ does not come from a connection on PG . Which is the best connection on PG in
this case?

The first obvious choice is the canonical connection. It is the unique connection ∇
c whose torsion is the intrinsic

torsion of the G-structure PG . It can be thought of as the orthogonal projection of the Levi-Civita connection in the
affine space of all G-connections in the following sense: ∇

c
= ∇ + Ac, where at each point p ∈ M, Ac

p is orthogonal
to (Tp M)∗ ⊗ g in (Tp M)∗ ⊗ so(Tp M).

Another choice would be to replace the condition of vanishing torsion, which characterizes the Levi-Civita
connection, by the requirement that the torsion is (covariantly) constant. This implies the existence of an invariant
element of (Tp M)∗ ⊗ so(Tp M) with respect to the holonomy group of the connection. If there is no such invariant
element with respect to G itself, this would mean that the holonomy group is a proper subgroup of G, i.e., a further
reduction of the structure group should be possible. Thus a G-connection with parallel torsion does not always exist.

A third possibility is a G-connection ∇
a

= ∇ + Aa , for which the potential Aa (or, equivalently, the torsion T a)
is totally skew-symmetric. The advantage of such a connection is that it has the same geodesics as the Levi-Civita
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connection. In particular, it is complete exactly when the metric is complete. In the general case though there is neither
existence nor uniqueness of a G-connection with totally skew-symmetric torsion.

As an illustration let us consider the case of almost Hermitian structure, i.e., G = U (n) ⊂ SO(2n). It is proved
in [9] (see also [11]) that a U (n)-connection (or, in the established terminology, a Hermitian connection) ∇

a with
totally skew-symmetric torsion exists iff the Nijenhuis tensor is totally skew-symmetric and in this case it is unique.
The last condition means that the almost Hermitian manifold lies in the Gray–Hervella class G1, which contains
the nearly Kähler and the Hermitian manifolds [13]. The connection ∇

a has been used by Bismut to prove a local
index theorem for the Dolbeault operator on Hermitian non-Kähler manifolds [6]. The perfect situation occurs in the
complementary case of nearly Kähler manifolds: the canonical connection has totally skew-symmetric torsion, which
is furthermore parallel. The last result was proved by Kirichenko [16] (for another proof see [4]). On the other hand,
on a manifold of class G1 which is not nearly Kähler (in particular, on a Hermitian manifold) ∇

a does not coincide
with the canonical connection nor is its torsion T a parallel in general.

In this paper we are interested in Sp(n)U (1)-structures, where Sp(n)U (1) is considered as a subgroup of
U (2n) × U (1) ⊂ U (2n + 1) ⊂ SO(4n + 2) by a certain inclusion ρ (see Section 2). More precisely, we study the
(4n + 2)-dimensional Hermitian manifolds whose unique Hermitian connection with totally skew-symmetric torsion
∇

a has holonomy contained in ρ(Sp(n)U (1)) and parallel torsion T a .
In Section 3 we consider (2m + 2)-dimensional Hermitian manifolds such that the holonomy group of ∇

a

is a subgroup of U (m) × U (1) and the torsion T a satisfies a simple algebraic condition (see Proposition 3.2).
We show that there is an interesting correspondence between such manifolds and nearly Kähler manifolds with
Hol(∇c) ⊂ U (m) × U (1). This allows us to prove that the torsion T a is parallel. Furthermore, we prove that if
T a is non-degenerate, then m = 2n and Hol(∇a) ⊂ ρ(Sp(n)U (1)). It follows also that the Ricci tensors of both ∇

a

and the Levi-Civita connection ∇ are ∇
a-parallel and positive definite.

In Section 4 we consider the curvature tensor of a Hermitian manifold such that ∇
a has parallel torsion and

holonomy ρ(Sp(n)U (1)). It turns out that it decomposes in a way very similar to the decomposition of the curvature
of a quaternionic Kähler manifold. The methods of this section can be applied to give a proof of the above mentioned
fact that the torsion of a nearly Kähler manifold is parallel. This is done using the first Bianchi identity and the
representation theory of U (n).

In Section 5 we show what Section 4 makes conceivable: there are examples on twistor spaces of quaternionic
Kähler manifolds (we adopt the definition that a 4-dimensional manifold is quaternionic Kähler if it is self-dual
and Einstein). The twistor space Z of a quaternionic Kähler manifold M ′ carries in a natural way two almost
complex structures J1 (integrable) and J2 (non-integrable). They were first defined on twistor spaces of 4-dimensional
manifolds in [3] and [8] respectively. On Z there exists also a one-parameter family of metrics ht , t > 0, Hermitian
with respect to both J1 and J2. If the base M ′ has positive scalar curvature, there are two particularly interesting values
t0 and t1 of the parameter t , such that (Z, ht0 , J1) is Kähler and (Z, ht1 , J2) is nearly Kähler [10,23,19,2]. We prove
that the connection ∇

a of (Z, ht1 , J1) has parallel torsion and holonomy ρ(Sp(n)U (1)).
In the next two sections we prove the main result of this paper: there are no other examples, either globally or

locally.
The global result is contained in Theorem 6.1: a complete Hermitian manifold, such that ∇

a has parallel torsion and
holonomy ρ(Sp(n)U (1)), is the twistor space (Z, ht1 , J1) of some compact quaternionic Kähler manifold M ′ with
positive scalar curvature. In particular, there are only finitely many such manifolds in each dimension since the same
is true for the compact quaternionic Kähler manifolds with positive scalar curvature [17,18]. In fact, the only known
examples of compact quaternionic Kähler manifolds with positive scalar curvature are the Wolf spaces [24,5]. In this
case (Z, ht1 , J1) is homogeneous naturally reductive. According to the results in [10,15,22,14] the Wolf spaces are
the only compact quaternionic Kähler manifolds with positive scalar curvature in dimensions 4, 8 and 12. Therefore
we get a complete list of the Hermitian manifolds of dimension 6, 10 and 14, satisfying the above conditions. In the
proof of Theorem 6.1 we use the corresponding results about nearly Kähler manifolds of Belgun and Moroianu [4]
and Nagy [20].

Section 7 is devoted to the proof of Theorem 7.1, which is the local version of Theorem 6.1. As a corollary we get
a corresponding local result for nearly Kähler manifolds.

Finally, we should mention that in dimension 6 this paper covers one of the cases considered in [1]. The subject
of [1] are the 6-dimensional Hermitian manifolds on which ∇

a has parallel torsion T a . Thus T a is invariant with
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respect to the holonomy group of ∇
a and this strongly restricts the possible holonomy groups. In [1] these possibilities

are listed and the corresponding manifolds are studied.

2. Algebraic preliminaries

Let T ∼= R2m+2 be the standard (2m + 2)-dimensional real representation of U (m + 1) (in the following sections
T will be the tangent space of a Hermitian manifold). Its complexification is TC = T 1,0

⊕ T 0,1, where T 1,0 ∼= Cm+1

is the standard (m + 1)-dimensional complex representation of U (m + 1) and T 0,1 is its conjugate. Denote by
Λp,q T ∗ ∼= Λp(T 1,0)∗ ⊗ Λq(T 0,1)∗ the space of (complex) (p, q)-forms on T . Let H ∼= R2m (resp. V ∼= R2) be
the standard 2m-dimensional (resp. 2-dimensional) real representation of U (m) (resp. U (1)), with further notation
similar to the above for T . Then, as representations of U (m)× U (1),

T = H⊕ V, T 1,0
= H1,0

⊕ V1,0, T 0,1
= H0,1

⊕ V0,1.

Let us now consider the subgroup Sp(n)U (1) of U (2n) (as an abstract group it is isomorphic to (Sp(n)×U (1)) /Z2
).

Define the inclusion ρ : Sp(n)U (1) −→ U (2n)× U (1) ⊂ U (2n + 1) as follows: if a ∈ Sp(n), b ∈ U (1), then

ρ(ab) =

(
ab 0
0 b2

)
∈ U (2n)× U (1) ⊂ U (2n + 1).

If n = 1, Sp(1)U (1) ∼= U (2) and for c ∈ U (2)

ρ(c) =

(
c 0
0 det c

)
∈ U (2)× U (1) ⊂ U (3).

Denote by E the standard 2n-dimensional complex representation of Sp(n) and by F(k) the complex (1-
dimensional) representation of U (1) with weight k. Since E is self-adjoint, by the definition of ρ we have that, as
ρ(Sp(n)U (1))-representations,

H1,0 ∼= (H0,1)∗ ∼= E ⊗ F(1), H0,1 ∼= (H1,0)∗ ∼= E ⊗ F(−1),

V1,0 ∼= (V0,1)∗ ∼= F(2), V0,1 ∼= (V1,0)∗ ∼= F(−2).

Let e1, . . . , e2n+1 be an orthonormal basis of T 1,0 such that e1, . . . , e2n ∈ H1,0, e2n+1 ∈ V1,0 and

ω0 =

n∑
k=1

e2k−1
∧ e2k

∈ Λ2,0H∗ ∼= Λ2 E ⊗ F(−2)

is the 2-form corresponding to the Sp(n)-invariant 2-form on Λ2 E (e1, . . . , e2n+1 is the basis dual to e1, . . . , e2n+1).
Define

T0 := ω0 ∧ ē2n+1
∈ Λ2,0H∗

⊗ Λ0,1V∗
⊂ Λ2,1T ∗.

T0 is obviously ρ(Sp(n)U (1))-invariant and

|λT0 + λ̄T 0|
2

= 12n|λ|2. (2.1)

(Here and in the sequel we use the tensorial norms. The other popular convention is that the norm of a (skew-
symmetric) k-form is its tensorial norm divided by k!.)

Proposition 2.1. The subspace of Λ2,1T ∗ on which ρ(Sp(n)U (1)) acts trivially is 1-dimensional and is spanned by
T0.

Proof. We have

Λ2,1T ∗ ∼= Λ2,0T ∗
⊗ (T 0,1)∗ ∼= (Λ2,0H∗

⊕ (H1,0)∗ ⊗ (V1,0)∗)⊗ ((H0,1)∗ ⊕ (V0,1)∗).

Further, the decompositions of these tensor products into irreducible ρ(Sp(n)U (1))-representations are

Λ2,0H∗
⊗ (H0,1)∗ ∼= ((C ⊕ Λ2

0 E)⊗ F(−2))⊗ (E ⊗ F(1)) ∼= (E ⊕ E ⊕ Λ3
0 E ⊕ K )⊗ F(−1),
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where K is the irreducible representation of Sp(n) with highest weight (2, 1, 0, . . . , 0),

Λ2,0H∗
⊗ (V0,1)∗ ∼= ((C ⊕ Λ2

0 E)⊗ F(−2))⊗ F(2) ∼= C ⊕ Λ2
0 E,

((H1,0)∗ ⊗ (V1,0)∗)⊗ (H0,1)∗ ∼= (E ⊗ F(−1)⊗ F(−2))⊗ (E ⊗ F(1)) ∼= (C ⊕ Λ2
0 E ⊕ S2 E)⊗ F(−2),

((H1,0)∗ ⊗ (V1,0)∗)⊗ (V0,1)∗ ∼= (E ⊗ F(−1)⊗ F(−2))⊗ F(2) ∼= E ⊗ F(−1)

(Λ2
0 E and K are 0 if n = 1 and the same is true for Λ3

0 E if n ≤ 2).
Hence the only subspace of Λ2,1T ∗, on which ρ(Sp(n)U (1)) acts trivially, is contained in Λ2,0H∗

⊗ (V0,1)∗ and
is obviously spanned by T0. �

Corollary 2.2. Consider the space of real ((2, 1) ⊕ (1, 2))-forms as a real ρ(Sp(n)U (1))-representation. Then the
subspace on which ρ(Sp(n)U (1)) acts trivially has (real) dimension 2 and is spanned by T0 + T 0 and iT0 − iT 0.

Proposition 2.3. The subgroup of U (2n + 1), which preserves T0, is ρ(Sp(n)U (1)).

Proof. We already know that T0 is ρ(Sp(n)U (1))-invariant. Let h ∈ U (2n + 1) be such that h(T0) = T0, i.e.,

h(ω0) ∧ h(ē2n+1) = ω0 ∧ ē2n+1. (2.2)

Hence h preserves (V0,1)∗ = span{ē2n+1
} since the splitting TC = T 1,0

⊕ T 0,1 is U (2n + 1)-invariant. Therefore

h =

(
c 0
0 d

)
∈ U (2n)× U (1).

Let a ∈ U (2n), b ∈ U (1) be such that c = ab, d = b2. Then h(ē2n+1) = b2.ē2n+1, h(ω0) = b−2.a(ω0)

and so h(ω0) ∧ h(ē2n+1) = a(ω0) ∧ ē2n+1. This and (2.2) imply a(ω0) = ω0, i.e., a ∈ Sp(n) and therefore
h ∈ ρ(Sp(n)U (1)). �

Let g denote the standard inner product on T and J be the standard complex structure (acting as multiplication by
i on T ∼= C2n+1). Define K , I ∈ End(T ) by

g((K + i I )X, Y ) = 2ω0(X, Y ), X, Y ∈ T . (2.3)

Then K and I vanish on V , preserve H, K|H and I|H are orthogonal with respect to g|H and I|H, J|H, K|H satisfy
the quaternionic identities. Since spanC{ω0} is ρ(Sp(n)U (1))-invariant, span{K , I } is ρ(Sp(n)U (1))-invariant. Thus
span{I|H, J|H, K|H} is a ρ(Sp(n)U (1))-invariant quaternionic structure on H compatible with g|H.

Later we shall need also a second inclusion ρ2 : Sp(n)U (1) −→ U (2n)× U (1) ⊂ U (2n + 1), defined as follows:
if a ∈ Sp(n), b ∈ U (1), then

ρ2(ab) =

(
ab 0
0 b−2

)
∈ U (2n)× U (1)

(
if n = 1, we have ρ2 : U (2) −→ U (2)× U (1):

ρ2(c) =

(
c 0
0 (det c)−1

))
.

3. Hermitian manifolds with Hol(∇a) ⊂ U(m) × U(1)

Let (M, g, J ) be an almost Hermitian manifold. We denote the Levi-Civita connection by ∇ and the Kähler form
by Ω ,

Ω(X, Y ) = g(J X, Y ).

We shall assume that (M, g, J ) belongs to the class G1 of Gray and Hervella [13]. This class is characterized by the
property that the Nijenhuis tensor N is totally skew-symmetric. As shown in [9], this is equivalent to the existence of
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a Hermitian connection ∇
a with totally skew-symmetric torsion T a and this connection is furthermore unique. It is

given by

∇
a

= ∇ +
1
2

T a,

T a
= −dcΩ + N ,

where dcΩ(X, Y, Z) = −dΩ(J X, JY, J Z). The class G1 contains as subclasses the Hermitian manifolds and the
nearly Kähler manifolds. They can be distinguished in terms of the torsion T a as follows: the manifold is Hermitian
(i.e., J is integrable) iff T a is a ((2, 1)⊕ (1, 2))-form and in this case T a

= −dcΩ , and it is nearly Kähler iff T a is a
((3, 0)⊕ (0, 3))-form. In the latter case ∇

a coincides with the canonical Hermitian connection ∇
c.

Proposition 3.1. Let (M, g, J ) be Hermitian, Hol(∇a) = ρ(Sp(n)U (1)) and ∇
aT a

= 0. Then T a
= λT0 + λ̄T 0,

where λ ∈ C is a constant and T0 is the ∇
a-parallel tensor field defined by the ρ(Sp(n)U (1))-invariant tensor T0

from Section 2.

Proof. ∇
aT a

= 0 implies that T a is invariant with respect to Hol(∇a) = ρ(Sp(n)U (1)) and the assertion follows
from Corollary 2.2. �

Let (M2m+2, g, J ) belong to the class G1 and Hol(∇a) ⊂ U (m)× U (1). Then we have a ∇
a-parallel, orthogonal

and J -invariant splitting T M = H⊕V , where dimRH = 2m, dimR V = 2. We can define an orthogonal with respect
to g almost complex structure Ĵ by

Ĵ|H = J|H, Ĵ|V = −J|V .

Proposition 3.2. Let (M, g, J ) be a Hermitian manifold with Hol(∇a) ⊂ U (m)×U (1) and T a
∈ Λ2,0H∗

⊗Λ0,1V∗
⊕

Λ0,2H∗
⊗ Λ1,0V∗. Then (M, g, Ĵ ) is nearly Kähler and its canonical connection coincides with ∇

a . Conversely, if
(M, g, J ) is nearly Kähler with Hol(∇a) ⊂ U (m) × U (1) and T a

∈ Λ2,0H∗
⊗ Λ1,0V∗

⊕ Λ0,2H∗
⊗ Λ0,1V∗, then

(M, g, Ĵ ) is Hermitian and the unique Hermitian connection with totally skew-symmetric torsion coincides with ∇
a .

Remark. The condition T a
∈ Λ2,0H∗

⊗ Λ1,0V∗
⊕ Λ0,2H∗

⊗ Λ0,1V∗ is automatically satisfied for a 6-dimensional
nearly Kähler manifold.

Proof. The definition of Ĵ implies that ∇
a Ĵ = 0. Hence ∇

a is the Hermitian connection with totally skew-symmetric
torsion also for (M, g, Ĵ ).

If (M, g, J ) is Hermitian and T a
∈ Λ2,0H∗

⊗Λ0,1V∗
⊕Λ0,2H∗

⊗Λ1,0V∗, then T a is a ((3, 0)⊕ (0, 3))-form with
respect to Ĵ and therefore (M, g, Ĵ ) is nearly Kähler.

If (M, g, J ) is nearly Kähler with T a
∈ Λ2,0H∗

⊗ Λ1,0V∗
⊕ Λ0,2H∗

⊗ Λ0,1V∗, then T a is a ((2, 1)⊕ (1, 2))-form
with respect to Ĵ and therefore (M, g, Ĵ ) is Hermitian. �

Since the torsion of the canonical connection of a nearly Kähler manifold is parallel [16], we get

Corollary 3.3. If (M, g, J ) is a Hermitian manifold with Hol(∇a) ⊂ U (m) × U (1) and T a
∈ Λ2,0H∗

⊗ Λ0,1V∗
⊕

Λ0,2H∗
⊗ Λ1,0V∗, then ∇

aT a
= 0.

Remark. The condition T a
∈ Λ2,0H∗

⊗ Λ0,1V∗
⊕ Λ0,2H∗

⊗ Λ1,0V∗ implies that Ω is co-closed, i.e., (M, g, J ) is
semi-Kähler (or balanced).

We summarize now some simple facts about Riemannian manifolds (M, g) with metric connection ∇
a

= ∇ +
1
2 T a

with totally skew-symmetric torsion T a , such that ∇
aT a

= 0. In this case the first Bianchi identity is

SX,Y,Z Ra(X, Y, Z ,W ) = σT a (X, Y, Z ,W ), (3.4)

where SX,Y,Z denotes a cyclic sum with respect to X , Y , Z and σT a ∈ Λ4T ∗M is defined by

σT a (X, Y, Z ,W ) = SX,Y,Z g(T a(X, Y ), T a(Z ,W )). (3.5)
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(For the curvature tensors we use the following convention:

R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ], R(X, Y, Z ,W ) = g(R(X, Y )Z ,W ).)

The Bianchi identity (3.4) implies Ra(X, Y, Z ,W ) = Ra(Z ,W, X, Y ).
Since ∇

aT a
= 0, we have Ra(U, V )(T a) = 0, i.e.,

SX,Y,Z Ra(U, V, X, T a(Y, Z)) = 0. (3.6)

The explicit relation between Ra and the curvature R of the Levi-Civita connection is given by

Ra(X, Y, Z ,W ) = R(X, Y, Z ,W )+
1
2

g(T a(X, Y ), T a(Z ,W ))

+
1
4

g(T a(Y, Z), T a(X,W ))−
1
4

g(T a(X, Z), T a(Y,W )). (3.7)

Therefore we get the following relations between the Ricci tensors and the scalar curvatures of ∇
a and ∇:

Rica
= Ric −

1
4

ra, sa
= s −

|T a
|
2

4
, (3.8)

where ra(X, Y ) = g(T a(X, ·), T a(Y, ·)).
From now on we shall consider almost Hermitian manifolds (M, g, J ) belonging to G1 such that T a is non-

degenerate, i.e., T a(X, ·) 6= 0 for each X 6= 0. Notice that for Hermitian manifolds this condition is weaker than
the requirement ∇X J 6= 0 for each X 6= 0. For nearly Kähler manifolds the two conditions are equivalent and the
manifolds satisfying them are called strict nearly Kähler [12].

Proposition 3.4. Let (M, g, J ) be a Hermitian manifold such that Hol(∇a) ⊂ U (m)×U (1), T a
∈ Λ2,0H∗

⊗Λ0,1V∗
⊕

Λ0,2H∗
⊗ Λ1,0V∗ and T a is non-degenerate. Then m = 2n, Hol(∇a) ⊂ ρ(Sp(n)U (1)) and T a

= λT0 + λ̄T 0, where
λ ∈ C \ {0} is a constant.

Proof. From Corollary 3.3 we know that ∇
aT a

= 0. Since ∇
a J = 0, we have

Ra(J X, JY, Z ,W ) = Ra(X, Y, J Z , J W ) = Ra(X, Y, Z ,W ), Rica(J X, JY ) = Rica(X, Y ).

Let {eα} be a basis of T 1,0 M . Then the Bianchi identity (3.4) becomes

Ra
αβ̄γ δ̄ − Ra

γ β̄αδ̄ = (σT a )αβ̄γ δ̄. (3.9)

Contracting (3.6) with respect to V and X , we get

Rica S
AT a

BC S + gP Q gRS(Ra
AP B R T a

C QS + Ra
APC R T a

Q BS) = 0. (3.10)

Let A = α, B = β̄, C = γ̄ . Since T a is a ((2, 1)⊕ (1, 2))-form, we obtain

Ricaσ
αT a

β̄γ̄ σ + gδ̄τ gεσ̄ (−Ra
αδ̄β̄εT a

τ γ̄ σ̄ + Ra
αδ̄γ̄ εT a

τ β̄σ̄ ) = 0. (3.11)

In our case T a
= ω ∧ ēm+1

+ ω̄ ∧ em+1, where ω ∈ Λ2,0H∗ and em+1
∈ Λ1,0V∗, |em+1

| = 1. Since T a is non-
degenerate, ω must be a non-degenerate 2-form on H1,0. Hence H1,0 is even dimensional, i.e., m = 2n. We can take
an orthonormal basis e1, . . . , e2n+1 of T 1,0 M so that e1, . . . , e2n ∈ H1,0, e2n+1 ∈ V1,0 and ω =

∑n
k=1 λke2k−1

∧ e2k ,
where λk > 0, k = 1, . . . , n.

Let α = 2n + 1, β = 2k − 1, γ = 2k in (3.11). Then we get

λkRica2n+1
2n+1 − λk Ra

2n+12n+12k−12k−1 − λk Ra
2n+12n+12k2k = 0. (3.12)

From (3.9)

Ra
2n+12n+12k−12k−1 = Ra

2k−12n+12n+12k−1 + (σT a )2n+12n+12k−12k−1.

The splitting T M = H ⊕ V is ∇
a-parallel and therefore is preserved by Ra(X, Y ). Hence Ra

2k−12n+12n+12k−1 = 0.
Thus

Ra
2n+12n+12k−12k−1 = (σT a )2n+12n+12k−12k−1 = λk

2.
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Similarly, Ra
2n+12n+12k2k = λk

2. Hence (3.12) yields

Rica2n+1
2n+1 = 2λk

2, k = 1, . . . , n.

This means that λ1 = · · · = λn =: λ > 0 and

T a
= λ

n∑
k=1

e2k−1
∧ e2k

∧ ē2n+1
+ λ

n∑
k=1

ē2k−1
∧ ē2k

∧ e2n+1.

Now Proposition 2.3 implies that Hol(∇a) is conjugate to a subgroup of ρ(Sp(n)U (1)). �

The computations in the above proof yield the following.

Corollary 3.5. Let (M, g, J ) be as in Proposition 3.4. Then Rica , sa , Ric, s are given by (4.16) and (4.19) below. In
particular, Rica and Ric are positive definite and ∇

a-parallel and (M, g) is Einstein only if n = 1.

Proof. From (3.10) with A = α, B = β̄, C = γ and (3.11) in a similar way to in the proof of Proposition 3.4 we get

Ricaσ
α =

(n + 1)λ2, α = σ < 2n + 1,
2λ2, α = σ = 2n + 1,
0, α 6= σ.

This and (2.1) yield (4.16). (4.19) follows from (4.16) and (3.8). �

Remark. Let (M, g, J ) be a strict nearly Kähler manifold. Then T a is a ((3, 0)⊕(0, 3))-form. Taking A = α, B = β,
C = γ in (3.10) we get

Ricaσ
αT a

βγσ + gδ̄τ gε̄σ (Ra
αδ̄βε̄T a

γ τσ − Ra
αδ̄γ ε̄T a

βτσ ) = 0.

This together with (3.9) yields

Ricaσ
αT a

βγσ + gδ̄τ gε̄σ ((σT a )αδ̄βε̄T a
γ τσ − (σT a )αδ̄γ ε̄T a

βτσ ) = 0,

which in global notation can be written as

T a(Y, Z ,Rica(X)) =
1
2

T a(X, ra(Y ), Z)+
1
2

T a(X, Y, ra(Z)). (3.13)

Hence T a(Y, Z , (∇a
W Rica)(X)) = 0 for each Y, Z . Since T a is non-degenerate, this implies (∇a

W Rica)(X) = 0. Thus
∇

aRica
= 0 and by (3.8) also ∇

aRic = 0.
This proof is essentially due to Kirichenko [16] but he concludes wrongly from (3.13) that the manifold is Einstein.

The correct formulation can be found in [20]. From (3.13) one can also see that Rica and ra commute. Hence, there is
an orthonormal basis {eα} of T 1,0 M consisting of eigenvectors for both Rica and ra . If the corresponding eigenvalues
are µα and να , then (3.13) shows that µα =

1
2 (νβ + νγ ) whenever T a

αβγ 6= 0. Thus, since ra is positive definite, we
get that Rica (and by (3.8) also Ric) is positive definite. This has also been proved in [20].

From Propositions 3.2 and 3.4 we get

Corollary 3.6. Let (M, g, J ) be a strict nearly Kähler manifold with Hol(∇a) ⊂ U (m) × U (1) and T a
∈

Λ2,0H∗
⊗ Λ1,0V∗

⊕ Λ0,2H∗
⊗ Λ0,1V∗. Then m = 2n and Hol(∇a) ⊂ ρ2(Sp(n)U (1)).

4. The curvature

In Section 3 we saw that if (M, g, J ) is a Hermitian manifold with Hol(∇a) = ρ(Sp(n)U (1)) and ∇
aT a

= 0, then
T a

= λT0 + λ̄T 0 and the curvature tensor Ra has the following properties:
Ra(X, Y ) ∈ ρ(sp(n)⊕ u(1)),
Ra is symmetric with respect to the first and second pair of arguments,
bRa

= σT a ,
where b : (T ∗)⊗4

−→ (T ∗)⊗4 is

(bR)(X, Y, Z ,W ) = SX,Y,Z R(X, Y, Z ,W ).
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Let Ra denote the space of algebraic tensors with these properties, i.e.,

Ra
= S2(ρ(sp(n)⊕ u(1))) ∩ b−1(RσT0+T 0

).

Proposition 4.1. The complexification of Ra is isomorphic to C ⊕ S4 E as a ρ(Sp(n)U (1))-representation.

Proof. RσT0+T 0
and u(1) ∼= R are trivial representations of ρ(Sp(n)U (1)) and the complexification of sp(n) is

isomorphic to S2 E . Hence the complexification of Ra is

Ra
⊗ C ∼= S2(S2 E ⊕ C) ∩ b−1(CσT0+T 0

).

We have

S2(S2 E ⊕ C) ∼= S2(S2 E)⊕ S2 E ⊕ C

and

S2(S2 E) ∼= S4 E ⊕ L ⊕ Λ2
0 E ⊕ C,

where L is the representation of Sp(n) with highest weight (2, 2, 0, . . . , 0) (if n = 1, L and Λ2
0 E are 0). Thus the

decomposition of S2(S2 E ⊕ C) into irreducible ρ(Sp(n)U (1))-representations is

S2(S2 E ⊕ C) ∼= S4 E ⊕ L ⊕ Λ2
0 E ⊕ S2 E ⊕ C ⊕ C.

Taking particular representatives of these spaces and using Schur’s Lemma one sees that S4 E ⊂ ker b, that b
is non-zero on L , Λ2

0 E , S2 E and therefore they are not contained in Ra
⊗ C, and that b|C⊕C is injective and

b(C ⊕ C) ⊃ CσT0+T 0
. Thus Ra

⊗ C ∼= C ⊕ S4 E . �

Corollary 4.2. As a real representation of ρ(Sp(n)U (1)), Ra ∼= R⊕r(S4 E), where r(S4 E) is the real representation
underlying S4 E. If Ra

∈ Ra and the corresponding torsion is T a
= λT0 + λ̄T 0, then with respect to the above

isomorphism

Ra
=

|T a
|
2

48n
Ra

0 + Rhyper, (4.14)

where Rhyper has the properties of an algebraic hyper-Kähler curvature tensor on H and

Ra
0 (X, Y, Z ,W ) =

∑
L∈{1,I,J,K }

(g|H(LY, Z)g|H(L X,W )− g|H(L X, Z)g|H(LY,W ))

− 2(g|H(J X, Y )g|H(J Z ,W )+ 2g|H(J X, Y )g|V (J Z ,W )

+ 2g|V (J X, Y )g|H(J Z ,W )+ 4g|V (J X, Y )g|V (J Z ,W )). (4.15)

The Ricci tensor Rica and the scalar curvature sa of Ra are

Rica
=

|T a
|
2

12n
((n + 1)g|H + 2g|V ), sa

=
(n2

+ n + 1)|T a
|
2

3n
. (4.16)

Proof. One needs only to check that the preimage in C ⊕ C of σT a with respect to b is |T a
|
2

48n Ra
0 (recall that

|T a
|
2

= 12n|λ|2). The formulae for Rica and sa follow from the explicit form of Ra
0 (or, alternatively, from

Corollary 3.5). �

From (3.7) we obtain

Corollary 4.3. As a ρ(Sp(n)U (1))-representation, the space R of algebraic tensors with the properties of the
Riemannian curvature tensor of a Hermitian manifold with Hol(∇a) = ρ(Sp(n)U (1)) and ∇

aT a
= 0 is R ∼=

R ⊕ r(S4 E). With respect to this isomorphism, for R ∈ R, we have

R =
|T a

|
2

48n
R0 + Rhyper, (4.17)
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where Rhyper has the properties of an algebraic hyper-Kähler curvature tensor on H and

R0(X, Y, Z ,W ) = R
g|H
HPn (X, Y, Z ,W )

−
1
2

∑
L∈{I,K }

(g|H(LY, Z)g|H(L X,W )− g|H(L X, Z)g|H(LY,W )

− 2g|H(L X, Y )g|H(L Z ,W ))

+
1
2
(g|H(Y, Z)g|V (X,W )+ g|V (Y, Z)g|H(X,W )

− g|H(X, Z)g|V (Y,W )− g|V (X, Z)g|H(Y,W ))

+
3
2
(g|H(JY, Z)g|V (J X,W )+ g|V (JY, Z)g|H(J X,W )

− g|H(J X, Z)g|V (JY,W )− g|V (J X, Z)g|H(JY,W )

− 2g|H(J X, Y )g|V (J Z ,W )− 2g|V (J X, Y )g|H(J Z ,W ))

− 8g|V (J X, Y )g|V (J Z ,W ) (4.18)

(R
g|H
HPn is given by (5.21) with g′ replaced by g|H and I ′, J ′, K ′ replaced by I , J , K ). The Ricci tensor Ric and the

scalar curvature s of R are

Ric =
|T a

|
2

24n
((2n + 3)g|H + (n + 4)g|V ), s =

(4n2
+ 7n + 4)|T a

|
2

12n
. (4.19)

Proposition 3.4 yields

Corollary 4.4. If (M, g, J ) is as in Proposition 3.4, then Ra and R are as in Corollaries 4.2 and 4.3 and ∇
a Ra

0 = 0,
∇

a R0 = 0.

Remark. The results in this section have obvious counterparts for strict nearly Kähler manifolds with Hol(∇a) ⊂

U (m) × U (1) and T a
∈ Λ2,0H∗

⊗ Λ1,0V∗
⊕ Λ0,2H∗

⊗ Λ0,1V∗ (and therefore with Hol(∇a) ⊂ ρ2(Sp(n)U (1)) by
Corollary 3.6). One only needs to change the signs of the summands of the type g|H(J ·, ·)g|V (J ·, ·) in the formulae
for Ra

0 and R0.

Remark. The method of the proof of Proposition 4.1 can be used to prove the already mentioned fact that the
canonical connection of a nearly Kähler manifold has parallel torsion. In general, the first Bianchi identity has the
form

SX,Y,Z Ra(X, Y, Z ,W ) = SX,Y,Z (∇
a
X T a(Y, Z ,W )+ g(T a(X, Y ), T a(Z ,W ))).

Since Hol(∇a) ⊂ U (n), Ra
∈ Λ2T ∗

⊗ u(n). Furthermore, T a is a ((3, 0) ⊕ (0, 3))-form and therefore ∇
aT a

∈

T ∗
⊗ (Λ3,0T ∗

⊕ Λ0,3T ∗). Let τ a(X, Y, Z ,W ) = g(T a(X, Y ), T a(Z ,W )). Then

τ a(X, Y, Z ,W ) = g((T a)3,0(X, Y ), (T a)0,3(Z ,W ))+ g((T a)0,3(X, Y ), (T a)3,0(Z ,W )).

Hence, complexifying all spaces, we obtain

b(Ra
− ∇

aT a
− τ a) = 0

with Ra
∈ Λ2(TC)∗⊗u(n)C, ∇aT a

∈ ((T 1,0)∗⊕(T 0,1)∗)⊗(Λ3,0T ∗
⊕Λ0,3T ∗), τ a

∈ Λ2,0T ∗
⊗Λ0,2T ∗. Decomposing

these spaces into irreducible U (n)-representations and taking particular representatives and using Schur’s Lemma to
determine the rank of b on the different components, we obtain

((T 1,0)∗ ⊕ (T 0,1)∗)⊗ (Λ3,0T ∗
⊕ Λ0,3T ∗)

= Λ4,0T ∗
⊕ Λ0,4T ∗

⊕ V (2, 1, 1, 0, . . . , 0)⊕ V (0, . . . , 0,−1,−1,−2)

⊕Λ2,0T ∗
⊕ Λ0,2T ∗

⊕ V (1, 1, 1, 0, . . . , 0,−1)⊕ V (1, 0, . . . , 0,−1,−1,−1) (4.20)

(V (α) is the irreducible representation of U (n) with highest weight α) and



332 B. Alexandrov / Journal of Geometry and Physics 57 (2006) 323–337

• b is injective on the first four components in (4.20) and they are not contained in Λ2(TC)∗ ⊗ u(n)C and
Λ2,0T ∗

⊗ Λ0,2T ∗. Therefore ∇
aT a has no components in them.

• Λ2,0T ∗ is contained twice in Λ2(TC)∗ ⊗ u(n)C, but b|Λ2,0T ∗⊕Λ2,0T ∗⊕Λ2,0T ∗ is injective. Hence ∇
aT a has no

component in Λ2,0T ∗. In a similar way ∇
aT a has no component in Λ0,2T ∗.

• V (1, 1, 1, 0, . . . , 0,−1) is contained once in Λ2(TC)∗ ⊗u(n)C, but b|V (1,1,1,0,...,0,−1)⊕V (1,1,1,0,...,0,−1) is injective.
Thus ∇

aT a has no component in V (1, 1, 1, 0, . . . , 0,−1). The same is true for V (1, 0, . . . , 0,−1,−1,−1).

Hence ∇
aT a

= 0.

5. Examples: The twistor spaces

Recall that a quaternionic Kähler manifold is a 4n-dimensional Riemannian manifold (M ′, g′) whose holonomy is
contained in Sp(n)Sp(1) if n > 1 or which is self-dual and Einstein if n = 1. If n > 1 an equivalent definition is to
require the existence of a subbundle Q′

⊂ End(T M ′) of rank 3 which is locally trivialized by three orthogonal almost
complex structures I ′, J ′, K ′ satisfying the quaternionic identities. Such a bundle exists also if n = 1. In this case we
choose Q′

= Λ2
−M ′ (if we would like to choose the other possibility Q′

= Λ2
+M ′, we have to replace “self-dual” by

“anti-self-dual” in the definition of quaternionic Kähler manifold).
Every quaternionic Kähler manifold is Einstein and its curvature has the form

R′
=

s′

16n(n + 2)
RHPn + R′

hyper,

where s′ is the (constant) scalar curvature, RHPn is the (parallel) curvature tensor of HPn ,

RHPn (X, Y, Z ,W ) = g′(Y, Z)g′(X,W )− g′(X, Z)g′(Y,W )

+

∑
L∈{I ′,J ′,K ′}

(g′(LY, Z)g′(L X,W )− g′(L X, Z)g′(LY,W )− 2g′(L X, Y )g′(L Z ,W )),

(5.21)

and R′

hyper has the symmetries of a hyper-Kähler curvature tensor. If n = 1, RHPn is the curvature of S4 with the
metric with sectional curvature 4 and R′

hyper = W+ (the positive Weyl tensor).

The twistor space Z of a quaternionic Kähler manifold M ′ is the S2-bundle over M ′ whose fibre at p ∈ M ′ is
Zp = {z ∈ Q′

p : z2
= −1}. A local trivialization ψ = (π, ϕ) of Z is defined by a local frame I ′, J ′, K ′ of Q′, which

satisfies the quaternionic identities, as follows: if z ∈ Zp, z = aI ′
+ bJ ′

+ cK ′, then ϕ(z) = (a, b, c) ∈ S2
⊂ R3.

The Levi-Civita connection defines a horizontal distribution H on Z . Let V be the vertical distribution (tangent to
the fibres). Two almost complex structures J1 and J2 and a one-parameter family of Riemannian metrics ht , t > 0,
are defined on Z in the following way: at z ∈ Z

J1|Hz = J2|Hz is the complex structure corresponding to z under the isomorphism of Hz and Tπ(z)M ′ given by the
projection π : Z −→ M ′,

J1|Vz = −J2|Vz corresponds to the standard complex structure of S2 via ψ ,
ht |Hz corresponds to g′

π(z) via π ,

ht |Vz corresponds via ψ to the metric with sectional curvature 1
nt on S2,

H and V are orthogonal with respect to ht .
Every two frames of Q′ satisfying the quaternionic identities are related by an SO(3)-matrix and therefore the

definition of J1, J2 and ht is independent of the choice of ψ .
It is well known that J1 is integrable and J2 is not, that the Riemannian submersions π : (Z, ht ) −→ (M ′, g′) have

totally geodesic fibres and that J1 and J2 are orthogonal with respect to ht .
The Hermitian structures (ht , J1) are semi-Kähler for each t (see [19,2]). If the scalar curvature s′ of M ′ is positive,

there exist two especially interesting values of the parameter t : (Z, ht , J1) is Kähler iff t = t0 :=
4(n+2)

s′ and

(Z, ht , J2) is nearly Kähler iff t = t1 :=
2(n+2)

s′ (see [10,23,19,2]).
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Let us consider ∇
a,t , the Hermitian connection with totally skew-symmetric torsion of (Z, ht , J1). An immediate

consequence of the results in [19,2] is that its torsion T a,t is given by

T a,t
=

1
√

2nt

(
2 −

s′t

2(n + 2)

)
(ω ∧ ᾱ + ω̄ ∧ α), (5.22)

where ω ∈ Λ2,0H∗ and α ∈ Λ1,0V∗ are defined as follows:
Using the trivialization ψ we can consider the vertical vectors at z ∈ Z as elements of Q′

π(z) by identifying

(a, b, c) ∈ R3 with aI ′
+ bJ ′

+ cK ′
∈ Q′

π(z). Thus, if U ∈ Vz , we can define a 2-form ΩU on Tπ(z)M ′ by

ΩU (X, Y ) = g′(U (X), Y ). We fix U ∈ V1,0 with |U | = 1 and take α ∈ Λ1,0V∗ to be the dual form of U and

ω =

√
2nt
2 π∗ΩU .

We have

|T a,t
|
2

=
6
t

(
2 −

s′t

2(n + 2)

)2

. (5.23)

Now, using [19,2], one can prove that ∇
a,t T a,t

= 0 iff s′ > 0 and t = t0 (in this case T a,t0 = 0) or t = t1.
Furthermore, the splitting TZ = H ⊕ V is ∇

a,t1 -parallel (in fact, the splitting TZ = H ⊕ V is always parallel
with respect to the canonical Hermitian connection of (ht , J2), never parallel with respect to the canonical Hermitian
connection of (ht , J1) and parallel with respect to ∇

a,t only if s′ > 0 and t = t1). Thus, by Proposition 2.3 (or
Proposition 3.4) Hol(∇a,t1) ⊂ ρ(Sp(n)U (1)).

Proposition 5.1. Let (M ′, g′) be a quaternionic Kähler manifold with positive scalar curvature. Then the connection
∇

a,t1 on the twistor space (Z, ht1 , J1) has parallel torsion and Hol(∇a,t1) ⊂ ρ(Sp(n)U (1)). If (M ′, g′) is not locally
symmetric, then Hol(∇a,t1) = ρ(Sp(n)U (1)).

Proof. Only the last assertion remains to be proved.
Since Hol(∇a,t1) ⊂ ρ(Sp(n)U (1)), we have a ∇

a,t1 -parallel quaternionic structure on H, defined as in Section 2.
On the other hand, since π∗|Hz : Hz −→ Tπ(z)M ′ is an isomorphism, the quaternionic structure on M ′ also defines a
quaternionic structure on H. We are going to show that these two quaternionic structures coincide.

Fix z ∈ Z and choose the trivialization I ′, J ′, K ′ of Q′ so that J ′

π(z) = z. Then the vector U ∈ V1,0
z

in the definition of α and ω above can be taken to be U =
1

√
2nt1

(K ′
+ i I ′) and therefore ω =

1
2π

∗ΩK ′+i I ′ .

Thus the quaternionic structure span{I|Hz , J|Hz , K|Hz } on Hz , defined by Hol(∇a,t1), is exactly the pull-back
span{(π∗|Hz )

−1(I ′), (π∗|Hz )
−1(J ′), (π∗|Hz )

−1(K ′)} of the quaternionic structure Q′ on M ′.
In order to simplify the expressions, from now on we write g instead of ht1 , J instead of J1, ∇

a instead of ∇
a,t1

and T a instead of T a,t1 .
Since t1 =

2(n+2)
s′ , (5.22) and (5.23) become

T a
=

1
√

2nt1
(ω ∧ ᾱ + ω̄ ∧ α), (5.24)

|T a
|
2

=
3s′

n + 2
. (5.25)

Taking into account (5.25) and that the above defined quaternionic structures on H coincide, the explicit formulae for
the curvature tensor R of the Levi-Civita connection of (Z, ht ) in [7,2], applied for t = t1, show that R is given by
(4.17), where Rhyper is the horizontal lift of R′

hyper (and also R
g|H
HPn is the horizontal lift of RHPn ). Now (5.24) and

(3.7) imply that the curvature of ∇
a is given by (4.14), Rhyper being the same as above.

The Lie algebra hol(∇a) of Hol(∇a) is contained in ρ(sp(n) ⊕ u(1)). On the other hand, hol(∇a) contains the
algebra generated by {(∇a)kX1,...,Xk

Ra(X, Y ) : k ≥ 0} (in fact, ∇
a is real analytic and therefore hol(∇a) is equal to

this algebra but we do not need the real analyticity here).
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From the definition of ρ we see that ρ(u(1)) is spanned by J|H + 2J|V . If e1, . . . , e4n+2 is an orthonormal frame
of TZ , then (4.14) and (4.15) give

J|H + 2J|V = −
12n

(2n + 1)|T a |2

4n+2∑
k=1

Ra(ek, Jek).

Hence ρ(u(1)) ⊂ hol(∇a). Therefore to prove that ρ(sp(n)) ⊂ hol(∇a) it will be enough to show that the algebra
generated by

A =

{
the ρ(sp(n))-part of Ra(Xh, Y h), (∇a)

k
Xh

1 ,...,X
h
k

Ra(Xh, Y h) : k ≥ 1
}

contains ρ(sp(n)).
The ρ(sp(n))-part of Ra(Xh, Y h) is

|T a
|
2

48n

∑
L∈{1,I,J,K }

(g|H(LY h, ·)L Xh
− g|H(L Xh, ·)LY h)+ Rhyper(X

h, Y h)

and, because of (5.25), this projects on

s′

16n(n + 2)

∑
L∈{1,I ′,J ′,K ′}

(g′(LY, ·)L X − g′(L X, ·)LY )+ R′

hyper(X, Y ),

which is exactly the sp(n)-part of R′(X, Y ).
Since π is a Riemannian submersion, ∇ projects on the Levi-Civita connection ∇

′ of g′, i.e., h∇Xh Y h
= (∇ ′

X Y )h .
T a has no components in Λ3H∗ and therefore h∇

a
Xh Y h

= h∇Xh Y h . Thus ∇
a also projects on ∇

′ and since Rhyper

projects on R′

hyper and the splitting T M = V ⊕H is parallel with respect to ∇
a , (∇a)k Ra

= (∇a)k Rhyper for k ≥ 1

projects on ∇
′k R′

hyper.
Hence A projects on

B =

{
the sp(n)-part of R′(X, Y ),∇ ′k

X1,...,Xk
R′

hyper(X, Y ) : k ≥ 1
}
.

(M ′, g′) is quaternionic Kähler with non-zero scalar curvature which is not locally symmetric. Therefore
Hol(∇ ′) = Sp(n)Sp(1). Since every quaternionic Kähler manifold is real analytic, hol(∇ ′) = sp(n) ⊕ sp(1) is
generated by {∇

′k
X1,...,Xk

R′(X, Y ) : k ≥ 0}. But for k ≥ 1 we have ∇
′k
X1,...,Xk

R′(X, Y ) = ∇
′k
X1,...,Xk

R′

hyper(X, Y ) ∈

sp(n) and this implies that sp(n) is generated by B. Hence ρ(sp(n)) is contained in the algebra generated by A. Thus
ρ(sp(n)) ⊂ hol(∇a) and therefore hol(∇a) = ρ(sp(n)⊕ u(1)), i.e., Hol(∇a) = ρ(Sp(n)U (1)). �

Corollary 5.2. Let (M ′, g′) be a quaternionic Kähler manifold with positive scalar curvature. Then the canonical
connection ∇

a,t1 of the nearly Kähler manifold (Z, ht1 , J2) has Hol(∇a,t1) ⊂ ρ2(Sp(n)U (1)). If (M ′, g′) is not
locally symmetric, then Hol(∇a,t1) = ρ2(Sp(n)U (1)).

Remark. A locally symmetric quaternionic Kähler manifold M ′ has holonomy group H Sp(1) where H ⊂ Sp(n)
(see [5] for the list of possible groups H ). The proof of Proposition 5.1 shows that in this case the connection ∇

a,t1

on the twistor space (Z, ht1 , J1) has Hol(∇a,t1) = ρ(HU (1)). In particular, for M ′
= HPn again Hol(∇a,t1) =

ρ(Sp(n)U (1)). A similar remark is true for (Z, ht1 , J2) (replace ρ by ρ2).

6. The compact case

Theorem 6.1. Let (M, g, J ) be a complete Hermitian manifold such that Hol(∇a) ⊂ U (m) × U (1), T a
∈

Λ2,0H∗
⊗ Λ0,1V∗

⊕ Λ0,2H∗
⊗ Λ1,0V∗ and T a is non-degenerate. Then m = 2n and (M, g, J ) is isomorphic to

the twistor space (Z, ht1 , J1) of some compact quaternionic Kähler manifold with positive scalar curvature.

Proof. By Proposition 3.2 (M, g, Ĵ ) is a complete strict nearly Kähler manifold with Hol(∇a) ⊂ U (m)× U (1) and
T a

∈ Λ2,0H∗
⊗ Λ1,0V∗

⊕ Λ0,2H∗
⊗ Λ0,1V∗. It follows from the results in [20] (or [4] if n = 1) that (M, g, Ĵ )

is isomorphic to the twistor space (Z, ht1 , J2) of some compact quaternionic Kähler manifold with positive scalar
curvature. Now the definitions of Ĵ and J2 show that (M, g, J ) is isomorphic to (Z, ht1 , J1). �
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From the results of the previous sections we obtain

Corollary 6.2. A manifold which satisfies the assumptions of Theorem 6.1 is compact, simply connected, has positive
and ∇

a-parallel Ricci tensor, ∇
aT a

= 0 and Hol(∇a) ⊂ ρ(Sp(n)U (1)). If furthermore the quaternionic Kähler base
is not a symmetric space of rank greater than one, then Hol(∇a) = ρ(Sp(n)U (1)).

Theorem 6.1 has also the following consequences:

• In each dimension the manifolds satisfying its conditions are finitely many since the same is true for the compact
quaternionic Kähler manifolds with positive scalar curvature [17,18].

• The only known examples of compact quaternionic Kähler manifolds with positive scalar curvature are the Wolf
spaces [24,5], which are symmetric. Their twistor spaces (Z, ht1 , J1) are homogeneous. In fact, (Z, ht1) is a
naturally reductive homogeneous space with canonical connection ∇

a,t1 iff the base manifold is symmetric (this
follows from the proof of Proposition 5.1 for example).

• It is known that in dimensions 4, 8 and 12 there are no compact quaternionic Kähler manifolds with positive scalar
curvature other than the Wolf spaces [10,15,22,14]. Hence the only manifolds of dimension 6, 10 and 14 which
satisfy the conditions of Theorem 6.1 are the twistor spaces of S4 ∼= HP1, CP2; HP2, Gr2(C4), G2/SO(4); HP3,
Gr2(C5), G̃r4(R7).

7. The local case

The goal of this section is to prove the local version of Theorem 6.1.

Theorem 7.1. Let (M, g, J ) be a Hermitian manifold such that Hol(∇a) ⊂ U (m)×U (1), T a
∈ Λ2,0H∗

⊗Λ0,1V∗
⊕

Λ0,2H∗
⊗ Λ1,0V∗ and T a is non-degenerate. Then m = 2n and locally (M, g, J ) is isomorphic to the twistor space

(Z, ht1 , J1) of some 4n-dimensional quaternionic Kähler manifold M ′ with positive scalar curvature. In particular,
∇

aT a
= 0 and Hol(∇a) ⊂ ρ(Sp(n)U (1)), with equality if M ′ is not locally symmetric of rank greater than one.

We begin the proof with the following straightforward

Lemma 7.2. Let U, V ∈ Γ (V) and X, Y ∈ Γ (H). Then

∇U V = ∇
a

U V ∈ V,

∇U X = ∇
a

U X −
1
2

T a(U, X) ∈ H,

h∇X U =
1
2

T a(U, X), v∇X U = ∇
a

X U,

h∇X Y = ∇
a

X Y, v∇X Y = −
1
2

T a(X, Y )

(h and v are the projections on H and V respectively). In particular, V is a totally geodesic distribution and therefore
integrable.

This lemma implies that each point of M has a neighbourhood of the form M ′
× F , where the fibres {p′

} × F
are integral manifolds for V . We restrict our considerations to this neighbourhood and denote it again by M . Let
π : M −→ M ′ be the projection.

From Lemma 7.2 we obtain

Lemma 7.3. (LU g)(X, Y ) = 0 for U ∈ V and X, Y ∈ H. Hence there exists a Riemannian metric g′ on M ′ such that
π : (M, g) −→ (M ′, g′) is a Riemannian submersion.

From Proposition 3.4 we know that m = 2n, Hol(∇a) ⊂ ρ(Sp(n)U (1)) and T a
= λT0 + λ̄T 0, where λ 6= 0 is a

constant. Thus we have a ∇
a-parallel and compatible with g|H quaternionic structure Q = span{I|H, J|H, K|H} on

H, where K and I are defined by (2.3).
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Lemma 7.4. Let U ∈ V . Then (hLU (I|H), hLU (J|H), hLU (K|H)) = (I|H, J|H, K|H).A(U ), where

A(U ) =


0 −2Re(λe2n+1(U ))

1
2

Im(e2n+1(∇a
U e2n+1))

2Re(λe2n+1(U )) 0 −2Im(λe2n+1(U ))

−
1
2

Im(e2n+1(∇a
U e2n+1)) 2Im(λe2n+1(U )) 0

 .

Hence Q = span{I|H, J|H, K|H} projects on a quaternionic structure Q′ on M ′.

Proof. The first claim follows from the definition of K and I . Thus hLU (I|H), hLU (J|H), hLU (K|H) ∈

span{I|H, J|H, K|H} and therefore Q is projectable. �

Obviously Q′ and g′ are compatible, i.e., they define an almost quaternionic Hermitian structure on M ′.

Lemma 7.5. ∇
a projects on the Levi-Civita connection ∇

′ of (M ′, g′). Hence Q′ is ∇
′-parallel.

Proof. Since π is a Riemannian submersion, ∇ projects on ∇
′, i.e., h∇Xh Y h

= (∇ ′

X Y )h . Now Lemma 7.2 implies
h∇

a
Xh Y h

= (∇ ′

X Y )h , which means that ∇
a also projects on ∇

′. Since Q is ∇
a-parallel, the second claim follows

from Lemma 7.4. �

Thus (M ′, g′) is quaternionic Kähler if n > 1. Now we need to compute its curvature R′ to see that it is self-dual
and Einstein if n = 1 and that the scalar curvature s′ is positive for all n. This follows from

Lemma 7.6. R′
=

|T a
|
2

48n RHPn + R′

hyper, where R′

hyper is the projection of Rhyper (the hyper-Kähler part of Ra) and
therefore has the symmetries of a hyper-Kähler curvature tensor.

Proof. According to O’Neill formulae [21,5]

R′(X, Y, Z ,W ) = R(Xh, Y h, Zh,W h)

+ g(AY h Zh, AXh W h)− g(AXh Zh, AY h W h)− 2g(AXh Y h, AZh W h),

where

AXh Y h
=

1
2
v[Xh, Y h

] =
1
2
v∇Xh Y h .

Hence, by Lemma 7.2, AXh Y h
= −

1
2 T a(Xh, Y h) and from (3.7) we obtain

R′(X, Y, Z ,W ) = Ra(Xh, Y h, Zh,W h)− g(T a(Xh, Y h), T a(Zh,W h)).

This and Corollary 4.4 yield

R′(X, Y, Z ,W ) =
|T a

|
2

48n
R

g|H
HPn (Xh, Y h, Zh,W h)+ Rhyper(X

h, Y h, Zh,W h). �

So, up to now we have shown that for all n, (M ′, g′) is quaternionic Kähler with positive scalar curvature

s′
=

(n+2)|T a
|
2

3 . Let Z be its twistor space.
For p ∈ M let f (p) be the projection of J|Hp , i.e., f (p) = π∗|Hp (J|Hp ) ∈ Q′

π(p). Hence f (p) ∈ Z and in this
way we obtain a map f : M −→ Z .

Now it is straightforward (but somewhat lengthy) to show that f gives the desired isomorphism of (M, g, J ) and
(Z, ht1 , J1). The main points are to prove that

1. f maps g|V on ht1 |V and J|V on J1|V , and

2. f∗ Xh
= Xh

Z (Xh is the horizontal lift on M and Xh
Z is the horizontal lift on Z).

This completes the proof of Theorem 7.1. �

Using Proposition 3.2, Corollaries 3.6 and 5.2 we obtain the obvious counterpart of Theorem 7.1 for nearly Kähler
manifolds:
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Corollary 7.7. Let (M, g, J ) be a strict nearly Kähler manifold with Hol(∇a) ⊂ U (m) × U (1) and T a
∈

Λ2,0H∗
⊗ Λ1,0V∗

⊕ Λ0,2H∗
⊗ Λ0,1V∗. Then m = 2n and locally (M, g, J ) is isomorphic to the twistor space

(Z, ht1 , J2) of some 4n-dimensional quaternionic Kähler manifold M ′ with positive scalar curvature. In particular,
Hol(∇a) ⊂ ρ2(Sp(n)U (1)), with equality if M ′ is not locally symmetric of rank greater than one.

Remark. The important point in Corollary 7.7 is that the result is local. For complete manifolds this follows from the
results in [20,4] used in the proof of Theorem 6.1.
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